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Abstraet--A novel dispersion equation describing the instability of low velocity, liquid jets is derived using 
an integro-differential approach. The explicit form of the derived equation enables much easier prediction 
of the most unstable wavenumbcr and disturbance growth rate than does Tomotika's implicit, complex 
dispersion relationship. Good agreement is observed with all limiting solutions to Tomotika's relationship 
and with numerical solutions to non-limiting cases. The influences of density ratio, viscosity ratio and 
Ohnesorge number on liquid jet instability are examined. 
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1. I N T R O D U C T I O N  

The injection of a liquid into another fluid has many industrial applications. Due to capillary 
instability, the injected liquid (the jet) becomes unstable and breaks up into droplets. According 
to Plateau (1873), capillary instability arises as a result of interfacial tension whenever the 
wavelength of the surface disturbance exceeds the circumference of the cylindrical liquid jet; i.e. 
capillary instability is caused by long disturbance waves. Rayleigh (1878) used rigorous theoretical 
analysis to show that, from an initially small disturbance, a number of unstable waves may form 
on the jet surface; the wave that causes the jet to breakup, the "most unstable wave", is that which 
has the maximum growth rate in amplitude. Rayleigh (1878, 1892a, b) applied this maximum 
instability theory to liquid-into-gas and gas-into-liquid systems. For viscous liquid jets, Rayleigh 
(1892a) obtained only a limiting solution. Weber (1931) derived a dispersion equation for a viscous 
liquid jet issuing into gas. Weber found that for viscous liquid jets, the most unstable wavelength 
is longer than that predicted by Rayleigh for inviscid liquid-into-gas systems (Rayleigh 1878). 
Following Rayleigh's approach and modeling the flows for both jet and ambient fluids as Stokes 
flows, Tomotika (1935) obtained a dispersion equation for a viscous liquid jet in another viscous 
liquid. Tomotika found that the instability of the jet is strongly influenced by the ratios of the 
viscosities and densities of the jet and ambient fluids, and the Ohnesorge number, a dimensionless 
parameter representing the ratio of viscous:interfacial-tension forces. 

Tomotika's equation is a general dispersion equation applicable to jets with low velocities. It 
contains more information than any dispersion equation obtained previously for the same 
applications; however, it is an implicit equation in complex form, and therefore is difficult to use 
in determining the most unstable wave and related information. Several attempts have been made 
to solve Tomotika's equation (Meister 1966; Meister & Scheele 1967; Takahashi & Kitamura 1971; 
Lee 1972; Lee & Flumerfelt 1981). To date, only a few limiting solutions have been obtained 
(Meister & Scheele 1967; Lee & Flumerfelt 1981) and, unfortunately, those limiting solutions do 
not apply to many liquid-into-liquid and liquid-into-gas systems of practical importance. In 
addition, the lack of clearly defined bounds of validity has often led to inappropriate use of those 
limiting solutions. An equivalent generalized explicit dispersion equation would eliminate such 
difficulties and facilitate analyzing the influences of the jet and ambient fluid properties on 
instability. This study seeks to develop an explicit dispersion equation under the same limits 
of analysis, principally Stokes flows for both phases, that apply to Tomotika's implicit 
equation. 
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2. GOVERNING EQUATIONS 

The flow system under consideration consists of an infinitely long, low-velocity, viscous, 
cylindrical liquid jet issuing into another fluid (liquid or gas). Both the jet and ambient fluids are 
assumed to be Newtonian and incompressible. Heat and mass transfer effects are neglected. 
Following Rayleigh (1892a) and Tomotika (1935), the motions of both the jet and ambient fluids 
are modeled as Stokes flows. Conservation of energy for the jet gives 

v ~  t (~pu~)dV + vr~JEudV- zou~njdS =O, [1] 

where V is the volume of the jet, t is time, p is density, u~ is the velocity component in the ith 
direction, z~j is the stress tensor, % is the strain-rate tensor, S is the area of the jet surface and nj 
is the projection of the unit outward normal to the jet. The first term in [1] represents the rate of 
increase in kinetic energy; the second term, the rate of energy dissipation; and the third term, the 
rate at which work is performed on the jet. The momentum and continuity equations that govern 
the motion of the ambient fluid are 

0fi _ lz V/~ + ~ Wii [2] 
0t p p 

and 

v .  a = 0, [31 

where the caret signifies properties of the ambient fluid, p is the pressure and # is the viscosity. 
The jet/ambient fluid interfacial conditions are: 

kinematic conditions, 
U~s = firs, 

and 
dynamic conditions, 

and 

uz~ = az~; [4] 

\ 0r j~ \ r l  r2J 
[5] 

rr~ = t1 \ 0 r  [6] 

where the subscript s denotes the properties at the interface, tr is the interfacial tension and rt and 
r2 are the principal radii of curvature of the interface. 

3. INSTABILITY ANALYSIS 

It is assumed that the jet surface is initially perturbed infinitesimally; the radius of the disturbed 
jet, rs, can be expressed as (Plateau 1873; Rayleigh 1878; Weber 1931; Tomotika 1936): 

rs = a + ~(t)cos kz, [7] 

where a is the undisturbed jet radius, ~ is the disturbance amplitude and k is the wavenumber. For 
low velocity conditions, the jet may be modeled as a one-dimensional Cosserat continuum (Bogy 
1978, 1979). Then, continuity leads to (Levich 1962; Lee 1974; Bogy 1978): 

OA O(Auz) 
+ - -  = 0, [8] 

Ot Oz 

where A = nr 2 is the jet cross-sectional area. Equation [8] yields the following approximate 
expression: 

Ouz 2 
- - ~  - - ~ c o s k z ,  
0z a 
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where a = d~t/dt. Thus, 

Continuity for the jet fluid yields 

2a 
uz = - ka sin kz. [9] 

r 
u, = - ~ c o s  kz. [ 1 0 ]  a 

The above expressions for u, and ut can be used to recast the first and second terms in [1]: 

1 2 f v ~  ( ~ p u i ) d V  n2ma3p + = ~ (8 t/2)oia [1 1] 

and 

fvzoEij dV = n2ma-----~# (24 + r/2)a 2, [12] 
2r/ 

where 8 = d2~/dt 2 and ~/= ka. (The integrations are performed between z = 0 and 2nm]k, over m 
integral number of  waves.) The work term in [1] can be expressed as 

fsZ~U,n, dS=fsZ.U.n.dS+fs%tUtn, dS. 
Applying the interfacial conditions, 

\ 63r / Ur dS - a + u, dS + f~ + ut dS. j s .Is ~ \63r 63z )~ 
[13] 

The interfacial tension term in [13] may be written as 

f 69 2rs t (1+1)__ :+ [ {63r'l~l'/~ 

tr cttr 1 -a ~ (  -- r/2)co s kz, 

where a/a represents the undisturbed component which is eliminated in instability analyses 
(Rayleigh 1878). Following Rayleigh, the surface integral in [13] containing the interfacial tension 
term is modified to 

f s [ a ( l + l ) - - ~ ]  u r d S -  2n2ma (1 - r/2)~t~" r/ [14] 

Equation [2] can be rewritten as 

63fit 163fi + / i [ 1 6 3 {  63t~z'~ 632fiz-I 

and 
63fi, 163/~_t_/iF63 (1 63 . \ 632fi,1 
63t- ~ 63r -~ t_ r-&r (rU')) +-~z: J" [16] 

For capillary instability, only disturbance waves having wavelengths longer than the circumfer- 
ence of  the jet are of  interest. Based on Rayleigh's maximum instability theory (Rayleigh 1878), 
it can be assumed that 2 ~>a. Equations [9], [10] and [4] suggest that fi~~(2/a)fi,~. Thus, 
fit "" (2/a)fi, and fit ~> fi,. Selecting 2 and a as characteristic lengths, [15] and [16] can be rewritten 
in dimensionless form as 

63a* 63P* ) _ ~ ! [ L  a_._[ , 63at~ [aV63~a* 7 [171 
63t* = ~zz' aRekr* 63r*k r ~r*)+k'2) 63z*-~j 
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and 

aOft* @ *  1 I - 0  / I  0 *~* \ f a \ 2 0 2 f i * l  [18] 
2 0I ~ -  Or* (rur Oz,---wA, 

where fi* - fi~ / U, fi * - fi, / U, t* -= t U / 2, r* =- r / a, z*  - z / 2 and /~* - ~6 / fg U 2 are dimensionless 
variables; Re - U@/fL  is the Reynolds number and U is the unperturbed jet velocity. Thus, 2/a  >> 1, 
fi* ,~ 1, fi* ,~ 1 and z* ~ 1. The order of magnitude of r* depends on the region of interest; two 
separate regions are considered. 

Region  l : G < r < 2 

In this region, it is assumed that r * ~  1. An order-of-magnitude analysis reduces [17] and [18] 
to 

oa* @* ~ 1 1 o / , o a * ~  
OT~, - Oz ~ + - - ~ r  ~ r * )  [191 a Re r* 0r* 

and 

~0 .  [20] 
0r* 

Region  2: r > 2 

In this region, 2 / (ar* )  = 2 / r  < 1 and Ofi* /Or*~O.  The diffusion term in region 2 is negligible in 
comparison with the equivalent term in region 1; thus, 

i.e. 

oa.* @* 

Ot* Oz* ' 

0t fi 0z" 
[211 

Modeling the flow in region 2 as potential flow, fiz is rewritten as G = Oq~13z. The velocity 
potential, q~, must satisfy Laplace's equation 

OZrp ~- 1 &p 02¢P - 0 
or2 ; G + ~ - ~ -  • 

Equation [21] becomes 

02q~ 1 O/~ . 
& & ~ & ' 

thus, 
0,p p 

0t ~6" 
[22] 

Solving for q~ and substituting into [22] yields 

j6 k K, (t/) 
- -  cos kz ,  [23] 

where K0 and K~ are the zeroth- and first-order modified Bessel functions of the second kind. The 
pressure term in [13] becomes 

s 2nZrnpa3 K°(rl ) 
/~ur d S  = ~/2 Kt (r/) a0L [24] 
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Equation [23], subject to [21], gives 

521 

1 a$ --_= 
p az 

-iK,osinkz 
K,(v) 

A( -2yy+ 

v a&, K&r) =-- 
2atK,o’ 

Equation [ 191 becomes 

P51 

The objective at this stage is to solve the surface integrals in [13] (those containing viscosity); 
hence, in [25], attention is focused on the interfacial zone, i.e. in the region rs < r < rs + a. In that 
region, r* N 1. For Stokes flow, Re < 1. Comparing the orders of magnitude of the terms in [25] 
gives _ r*arir -0 

a 
ar* ( > at-* - ’ 

i.e. 

The solution to [26] is 

a ati 
- rl =O, 

( ) ar ar 

where C, and C, are functions of t and z. In the region r > I, 

aq K&r) 
I&=- =k sin&-_ aZ K,(rl) 

The assumption ,l 9 a implies that 9 < 1, in which case, K,(q) N l/q. Therefore, 

ti: x airl sin kzK,,(kr). 

Also (based on [4] and [9]), 

2c? 
ti,, = - - sin kz. 

rl 

Equations [28] and [29] differ only in their functional dependence on r; thus, 

C,= -aivsinkz and Cz=+. 
rl 

Hence, 

ii,= -cEq sinkz b(f)+-$]. 

WI 

v71 

PI 

~291 

[301 

(Note, [30] is valid only near the interface; although the velocity distribution in the region 
rs + a < r < I is not known, it is not relevant to solving those surface integrals in [13] containing 
viscosity.) From [30], 

dq sin kz 

rs ’ 
[311 
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Based on the preceding, 

/1\-~Trr + Oz js u~dS + 2/1\ Or Js urdS = /1~-~r Uz-b-~fz Uz'+- 2-~r Ur)sdS 

fs \(cgfi~'~Or 7 -41r2ma/1~2 /1 . u~  dS = [321 
r/ 

All integrals in [13] have been recast as derivatives. Substituting [14]. [24] and [32] into [13] and 
combining with [11] and [12] in [1], and rearranging 

f 2 1 r/ K0(q)]6 / #__~_q2 2 4  /i ,2 1 a 21-,_____~ 2 . 

l + 2 P l + _ ~ K , ( q ) ]  Pa21+ 8 8 
[33] 

ct = % e °'', where % is the initial disturbance and oJ is the growth rate, satisfies [33]. The terms q2/8 
and ~/2/24 in [33] can be neglected based on the condition 2 >> a. Substituting = into [33] and 
rearranging yields the following dimensionless dispersion equation: 

[1 + ~l fip rl KiK°(q)qfl2+2Z(3+~) )J -- t/2)' [34] 

where [3 -co(2pa3/a) la is the dimensionless disturbance growth rate and Z -  #(2apa)  -'/2 is the 
Ohnesorge number based on the jet fluid. The jet is unstable whenever fl > 0 (~o > 0). The 
dispersion equation [34] is valid for either liquid-into-liquid or liquid-into-gas systems, as long as 
the motions of  both the jet and ambient fluids can be modeled as Stokes flows. If  the higher-order 
terms in [33] are retained and if ambient effects are neglected, [33] reduces to the solution obtained 
by Bogy for liquid-into-gas jets [i.e. [19] in Bogy (1978)]. 

The conditions assumed in developing [34] are exactly the same as those applied in Tomotika's 
analysis (Tomotika 1935). In that analysis, as in many other studies (e.g. Rayleigh 1892a; Weber 
1931), the dispersion equation is derived by applying the appropriate interfacial conditions. By 
contrast, in this study, the dispersion equation is obtained by conducting an energy balance on the 
jet. An advantage of  the present approach is that, by modeling the jet as a one-dimensional Cosserat 
continuum, the jet velocity can be determined easily and the ambient velocity can be solved using 
boundary-layer techniques; and, as discussed below, the resultant solution, [34], is much simpler 
than Tomotika's implicit dispersion equation. 

4. C O M P A R I S O N  WITH T O M O T I K A ' S  ANALYSIS  

Tomotika's dispersion equation (Tomotika 1935) can be expressed as 

det([a~]) = 0, [35] 

where [au] is a 4 × 4 matrix. All elements in the above matrix contain Bessel functions of q, r/t or 
r~, where 

q ~ = t / 2 +  ' r / 2=q2+2- -Z p~ '  

In concept, the dimensionless amplitude growth rate may be determined from [35] as 

• 

Solutions to limiting cases of Tomotika's equation are discussed in detail by Meister (1966), 
Meister & Scheele (1967), Lee (1972), and Lee & Flumerfelt (1981). Lee & Flumerfelt (1981) 
presented 11 limiting cases; however, those actually can be reduced to 7 distinct limiting cases. The 
following discussion compares the results of  the present investigation, [34], with the limiting 
solutions to Tomotika's equation, [35], as obtained by Meister & Scheele (1967) and Tomotika 
(1935). 
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Case 1: an inviseid liquid jet in a gas 

For the case of  an inviscid liquid jet in an ambient gas, [35] reduces to (Meister & Scheele 1967): 

f12 = 217( 1 2, Io(rl) [36] 
- u ) I, (~)' 

which is identical to the classical result obtained by Rayleigh (1878). Rayleigh determined that the 
most unstable wavenumber is ~/m = 0.697. Rewriting [34], 

1 p g 0 ( ~ ) ]  ~2 2 
1 + ~ -~ tl K---~J l~ + (2apa)~/2 (3/~ +/ i ) t /2 / /=  t/2(l - r/2), [37] 

and substituting the appropriate conditions for this specific case, viz. #/p = O, # = 0 and / i  = O, 
into [37] gives 

//2 = r/2(1 _ ~/2). [38] 

Since It(rl)/Io(~l),-, r//2 for r /<  1, [38] is essentially the same as the classical result, [36]. Equation 
[38] yields a most unstable wavenumber of  t/, = 0.707. 

Case 2: a gas jet in an inviscid liquid 

For the case of  a gas jet in an inviscid liquid, [35] reduces to (Meister & Scheele 1967): 

p K, (r/) [39] 
//2 = 2 ~ ~ (1 - ~2) K0(n)  ' 

which is identical to the classical result obtained by Rayleigh (1892b). Rayleigh determined that 
the most unstable wavenumber for this case is ~/m = 0.485. Substituting the appropriate conditions 
for this case, #/p >> 1,/1/#--.0 and Z ~ 0 ,  into [34] of  the present study yields 

1 ,a Ko(,1) o2 P r / ~  p = r/2(1 - -  r/2), [40] 

which is identical to [39]. 

Case 3: an inviscid liquid jet in another inviscid liquid 

For the case of an inviscid liquid jet in another inviscid liquid, [35] becomes (Meister & Scheele 
1967): 

2r/(1 - t/2) 
f12 = [41] 

I0(r/) ~ K0(r/)' f- 
I l (r/) ,O K, (v/) 

which is identical to the result obtained by Christiansen (1955). Substituting/~ = / i  = 0 into [37] 
yields 

1 1 # K0(r/) ] -2 + ~ P r/K---~j  p = t/2(1 -- r/2), [42] 

which may be rewritten as 

2r/(1 --F/2) 
f12 _ [43] 

2 ~ K0(~/)" 

~l P Kt(rl) 

Io(~l)/IlOl) "" 2/r/for r /<  1; therefore, [43] is essentially the same as [41]. From [39], [40] and [43], 
it can be seen t h a t / / - , 0  as ~/p~oo;  i.e. the density ratio has a stabilizing effect. Equation [41] 
may be rewritten as 

2r/(1 - r/2) It (r/) 
Io(,7) //~ = [44] 

t5 I, (t/) Ko(r/)" 
l q  

p lo(rl) K, O1) 
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Considering that 

1 
Io(r/)Kl(r/) + I, (r/)Ko(r/) = - ,  

r/ 

then 

I, (r/)K0 (r/) 

Io(r/)K,(r/) 

Since I0(q)~ 1 and K~ (r/)~ IM for q < 1, 

r/Io (r/)K, (r/) 
. 

/, (~)Ko(r/) *'0. 
I0 (r/)K1 (r/) 

Hence, [44] is equivalent to [36], i.e. the density effect may be neglected if the density ratio is of 
the order of 1. For this case the most unstable wavenumber is approximately r/m : 0.697. 

Case 4: a highly viscous liquid jet in a gas 

For the case of a highly viscous liquid jet in a gas, [35] reduces to (Meister & Scheele 1967): 

f12 + 6Zr/2fl = q2(1 _ r/2), [45] 

which is identical to the classical result obtained by Weber (1931). Weber determined the most 
unstable wavenumber in this case to be r/m = (2 + 6Z) I/z. Substituting the appropriate conditions 
for this case, ~/p ~ 0  and / i / #  ~0 ,  into [34] yields the classical result [45]. 

Case 5: a highly viscous liquid jet in a low viscosity liquid 

Meister & Scheele (1967) suggested that density ratio may be neglected when ~/p < 6, whereby 
the dispersion equation for a highly viscous liquid jet in an ambient liquid with low viscosity 
becomes the same as for the previous case, [45]. In this case, /1/# ~0 ,  thus [34] becomes 

I l q  Pr/K°(r/l]p2K,(r///2+6Zr/23=r/2(l_r/2). [46] 

If r/ < 1, then Ko(r/)/Kl(r/)< 1 and r/Ko(r/)/K~(r/),~ 1. Thus, if #/p < 2, the density ratio can be 
neglected and [46] reduces to [45]. As in the previous case, r/m = (2 + 6Z) -~/2. Meister (1966) and 
Meister & Scheele (1967) did not provide details in their analyses on the effect of the density ratio. 
Numerical calculations performed in this study suggest that, to contain the resultant error, #/p 
should be < 2. Density ratios in the range 2 < #/p < 6 may result in large errors when utilizing 
[45] if r/ > 0.5. 

Case 6: a low viscosity liquid jet in a highly viscous liquid 

For the case of a liquid jet with low viscosity in a highly viscous liquid, [35] reduces to (Meister 
& Scheele 1967): 

//2 + 22r/2fl = r/z(1 _ r/z), [47] 

where ,Z = f~(2apa) -1'2. Since in this case,/J//~ >> 1, the general solution developed in this study, 
[34], becomes 

[l+ Pr/K°(r/)l / /2 2Z/Jr/2fl [481 p 2Kl(r/)J + /~ =q2(1 _q2). 

Considering that Z~/U = Z and r/Ko(r/)/Kl(r/)~ 1, if ~/p <2,  [48] reduces to [47]. Meister & 
Scheele (1967) determined the most unstable wavenumber for this case to be rim = (2 + 22)  -I/2 
From [34], [45], [47] and [48], it can be seen that / / -~0 as Z--+m or/~//~ ~ oo; i.e. both the viscosity 
ratio and the Ohnesorge number have stabilizing effects. 

Case 7: a highly viscous liquid jet in another highly viscous liquid 

The case of a highly viscous liquid jet in another highly viscous liquid was analyzed by Tomotika 
(1935). Tomotika derived the following relationship for this case: 

Z / / =  (1 - r/2)F, [49] 
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Table 1. The r/m = r/mOi/#) relation obtained by Tomotika (1935) 

ti/# 0 0.2 1 I. 1 2 10 100 oo 

'/m 0 0.486 0.563 0.568 0.584 0.573 0.415 0 

531 

where F=F(rl,[t/#). Using numerical techniques, Tomot ika  calculated the most unstable 
wavenumber as a function of the viscosity ratio. Selected results of  Tomot ika ' s  analysis are 
presented in table 1. Tomot ika ' s  results in table 1 are suspect: 

(1) For /1 /#  <~ 1, the viscosity of  the ambient fluid becomes negligible; hence, case 
7 should reduce to case 5, and qm = (2 + 6Z)  -la.  

(2) For/1//~ >> 1, the viscosity of  the jet fluid becomes negligible; hence, case 7 should 
reduce to case 6, and r/m = (2 + 22~) -I/~. 

(3) Tomot ika  argued that the results presented in table 1 are validated by the 
apparent  agreement with an experiment performed by Taylor which determined 
that r/m--0.5 f o r / i / #  = 1.1 (Tomotika 1935). It  should be observed, however, 
that the most unstable wavenumbers calculated by Tomot ika  are relatively 
insensitive to the viscosity ratio over the range 0.2 < / i / #  < 100, all values being 
roughly 0.5. Hence, comparison with the single data point is inadequate to 
validate Tomot ika ' s  analysis. 

The results of  the present analysis yield the appropriate results at limiting viscosity ratios. For  
liquid-into-liquid systems, [34] reduces to 

fl2 + 2Z (3 + ~ ) rl2fl = rl2(1- rl2). [50] 

Based on Rayleigh's maximum instability theory, the most unstable wavenumber is obtained by 
applying the condition dfl/dq I, =,m = 0 to [50]: 

~,x_l/2 
?]m = 2 + 6 Z  + 2Z~) . [51] 

I f /1 /#  ,~ 1, case 7 reduces to case 5, and [51] yields Weber 's  classical result, qm = (2 + 6Z) -~/z. I f  
/1/# >> 1, case 7 reduces to case 6, and [51] yields 

r/m = 2 + 2Z = (2 + 22~)-t/z, 

which matches Meister & Scheele's (1967) result for case 6. Table 2 compares selected results from 
this study, viz. [51], with numerical solutions to Tomot ika ' s  equation, [35], obtained by Kitamura 
et al. (1982). The parameters for the numerical solutions span the range 0.68 <~/p <~ 1.47, 
0.06 ~</i//z ~< 4.33 and 1.96 x 10 -3 <~ Z ~< 9.96 x 10 -3, and thus represent non-limiting as well as 
limiting conditions. The most unstable wavenumbers predicted by Tomot ika ' s  limiting solution 
(Tomotika 1935) are also presented in table 2 for comparison. 

In table 2, the most unstable wavenumbers predicted in this study agree well with the numerical 
solutions to [35]; by contrast, Tomot ika ' s  limiting solution substantially underestimates the most 

Table 2. Most unstable wavenumber qm predictions 

Numerical solution This s tudy,  Tomotika's limiting 
/i//z to [35] a [51] b solution ¢ 

0.06 0.611 0.623 0.353 
0.10 0.643 0.688 0.409 
0.66 0.659 0.682 0.530 
I. 15 0.643 0.682 0.568 
2.56 0.666 0.702 0.583 
4.33 0.651 0.693 0.581 

"Obtained by Kitamura et aL (1982). 
WI'he Z values used in [51] are the same as those used in the corresponding numerical 

solutions. 
cSome values listed were obtained by interpolation (Tomotika 1935). 
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unstable wavenumber. It is believed that the large disagreement is due to Tomotika's neglect of 
the effect of the Ohnesorge number. Indeed, the Ohnesorge number and viscosity ratio are not 
independent. Under the condition, ~/p < 2, all limiting cases of liquid jets can be expressed by 

flz + 2z,qZfl = r/2(l _ r/z), [52] 

where Z* = (3/~ + f~)/(2aptr) ~/: is a modified Ohnesorge number. The corresponding most unstable 
wavenumber is r/m = (2 + 2Z*)-1/2. Thus, under such conditions, the most unstable wavenumber 
is influenced only by the modified Ohnesorge number. 

5. CONCLUSIONS 

For jets in ambient fluids conforming to Stokes flow, an explicit dispersion equation is obtained 
by employing an integro-differential approach. The dispersion equation of this study enables much 
easier prediction of the most unstable wavenumber and related information than Tomotika's 
implicit, complex dispersion equation. The equation developed here reduces to all limiting solutions 
to Tomotika's equation described in the literature. 

Based on this study, the following are concluded: 

(1) The effect of the viscosity ratio is influenced by the Ohnesorge number. In cases 
involving very large or very small viscosity ratios, the Ohnesorge number 
becomes the only significant parameter in the dispersion equation. Tomotika's 
prediction relating to the effect of the viscosity ratio does not approach the 
appropriate limiting solutions and, therefore, is suspect. 

(2) For the conditions considered in this study, the effect of the density ratio is 
weaker than those of the viscosity ratio or Ohnesorge number, and can be 
neglected in liquid-into-gas and many liquid-into-liquid systems; however, in 
gas-into-liquid systems, the density ratio could be a dominant factor. 

(3) All three parameters---density ratio, viscosity ratio and Ohnesorge number--tend 
to stabilize the jet. 

(4) For all limiting cases involving liquid jets, if ~/p < 2, the most unstable 
wavenumber can be expressed by the general equation, r/m = (2 + 2Z*) -~/2. 
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